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A Mixture-of-Experts Framework
for Adaptive Kalman Filtering

Wassim S. Chaer, Robert H. Bishop, Member, IEEE, and Joydeep Ghosh

Abstract— This paper proposes a modular and flexible ap-
proach to adaptive Kalman filtering using the framework of a
mixture-of-experts regulated by a gating network. Each expert
is a Kalman filter modeled with a different realization of the
unknown system parameters such as process and measurement
noise. The gating network performs on-line adaptation of the
weights given to individual filter estimates based on performance.
This scheme compares very favorably with the classical Magill
filter bank, which is based on a Bayesian technique, in terms of
i) estimation accuracy, ii) quicker response to changing environ-
ments, and iii) numerical stability and computational demands.
The proposed filter bank is further enhanced by periodically
using a search algorithm in a feedback loop. Two search al-
gorithms are considered. The first algorithm uses a recursive
quadratic programming approach which extremizes a modified
maximum likelihood function to update the parameters of the
best performing filter in the bank. This particular approach to
parameter adaptation allows a real-time implementation. The
second algorithm uses a genetic algorithm to search for the
parameter vector and is suited for post-processed data type
applications. The workings and power of the overall filter bank
and the suggested adaptation schemes are illustrated by a number
of examples.

I. INTRODUCTION

KALMAN filter requires an exact knowledge of the
model parameters for optimal performance. A well-
known problem in the implementation of the Kalman filter
is the process of selecting the filter parameters. Incorrect
modeling in the filter can lead to larger estimation errors
or divergence [1], [2]. Many approaches to the problem of
adaptive Kalman filtering (where the adaptation is with respect
to the filter parameters) have been considered in the literature.
Mehra [3] groups and discusses the main methods: correlation
[4], [5], covariance matching [6]-[8], Bayesian [9]-[11], and
maximum likelihood [12]-[14]. Of particular interest in this
paper is the Kalman filter bank approach, first proposed by
Magill [9] and subsequently categorized as a Bayesian method
by Mehra [3].
In the past two decades, several algorithms have emerged
to handle unknown parameters [15]-[18]. In particular, the in-
teracting multiple model (IMM) algorithm [18] has received a
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lot of attention [19]-[23]. IMM provides an improvement over
Magill’s scheme and general pseudo Bayes (GPB) methods
[15]-{17]. The IMM algorithm assumes that i) the unknown
parameter vector takes a finite number of values according
to a known transition probability matrix, and ii) requires a
filter for the unknown parameter vector. Also, IMM is less
computationally demanding than GPB but more than Magill’s
scheme.

This paper proposes an adaptive filter bank which can 1)
select “on-line” the best filter realization using a learning
network, ii) respond rapidly to changing environments by
being able to modify its selection based on the most recent
data, iii) adapt individual filters to better match incoming
data, and iv) avoid numerical instabilities and computational
demands of current techniques for the Magill filter bank.
Unlike the Magill scheme, the mixture-of-experts framework
does not assume that the optimal filter is included in the
bank. In practice, this allows the proposed scheme to produce
good results with smaller filter banks. Moreover, it does not
require the assumptions of IMM mentioned above, and is
computationally faster.

Fig. 1 illustrates the overall adaptive filtering structure con-
sisting of a filter bank and a learning network in a forward
loop, together with a search algorithm in a feedback loop.
The forward loop can be viewed as a multiple hypothesis
estimation algorithm, wherein different realizations of the
unknown (or uncertain) system parameters are coded into
each individual filter in the bank and the learning network
decides which realization provides the best estimate given the
available input data. The feedback loop, which contains the
search algorithm, is used to periodically update the various
filters in the filter bank utilizing the information learned about
the system in the forward loop. Note that the adaptive filtering
approach suggested by Fig. 1 is a general structure that can
be used for other filter models too.

The filter bank is composed of a finite number of filters
running in parallel, each modeled with a different realization
of the unknown parameters. In a general case, the unknown
parameter vector can include different process models as well
as different process and measurement noise. In many cases,
the uncertainties in modeling the process and measurement
are accounted for via the process and measurement noise.
A recursive weighting function (i.e., the learning function)
is then used to weight the outputs of the filters. The weight
factors are computed as input signals (or measurements) are
processed by the filter bank. The bank of filters learns which
filter is performing best by examining a given performance
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Fig. 1. Generalized adaptive filtering structure.

measure. When all input processing is completed, the highest
weight factor will correspond to the best performing filter.
The weight information is also used by a search algorithm
to update the filter bank. The filter bank update corresponds
to intelligently speculating on different realizations of the
unknown parameters.

We introduce a new learning network to mediate among
the competing Kalman filters. This network is akin to the
gating network used in mixture of experts systems recently
popularized in the neural network literature [24]-[26]. The
different Kalman filters are the individual experts in our
system. As measurements are processed, the gating network
adaptively assigns weights to the individual filters in propor-
tion to their performance. For comparison, the conventional
Bayesian method proposed by Magill [9] is also implemented
since it exists in actual systems today [27]-[30]. The Magill
scheme is capable of converging to the correct hypothesis
filter, or to the best performing hypothesis filter (when the bank
does not contain all the possible realizations). It is observed
that the gating network addresses several of the problems com-
monly encountered with Magill’s Bayesian scheme, namely,
numerical underflows and relatively long switching times in
the presence of changing parameters.

For filter banks that are not adaptive in the parameters, i.e.,
if filters in the bank are fixed, a very large number of filters
may be needed to cover all possible realizations. For example,
if we have three unknown parameters each of which has 10
possible realizations, a filter bank of size 1000 is required!
We tackle this problem by making the bank adaptive in the
parameters. This is achieved by including a search algorithm
in a feedback loop to periodically update the filter bank. This
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enables one to have a smaller filter bank and still get good
results.

Two search algorithms are studied: recursive quadratic pro-
gramming (RQP) [31] and genetic algorithms (GA’s) [32],
[33]. The first approach to parameter adaptation using RQP
extremizes a constrained nonlinear program. Hence, by using
a nonlinear programming optimization approach for the search
function, applying the updates periodically (whenever the best
performing filter is identified) and updating only the best
performing filter in the bank, a real-time implementation can
be achieved. This requires that the optimization computations
occur in parallel with the normal filter bank operations. On
the other hand, a GA uses the fitness of the high performance
filters to direct the search for better filter model parameters.
While the use of a GA increases the complexity of the adaptive
filtering problem by requiring a larger filter bank, the resulting
scheme becomes more natural to a nonreal time setting, such as
in a filter tuning procedure or when measurement data are post-
processed. This follows from the fact that the GA will update
the entire filter bank at one time. Then, all the measurement
data is processed again, and this process is repeated until
certain convergence criteria are satisfied. Etter ef al. [34] used
a similar structure to adaptively update the coefficients of an
infinite impulse response (IIR) filter.

The remainder of the paper is organized as follows. Section
II describes the Magill filter bank and the modeling problem
encountered in the Kalman filter. Section III introduces our
proposed approach to adaptive Kalman filtering using the
concept of a mixture-of-experts regulated by a gating net-
work. Section IV includes the derivation of the constrained
nonlinear program whose solution is found by using a RQP
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approach. The solution is used to adapt a particular filter in
the bank. Section V consists of a simple tracking example
where a number of experiments are conducted to illustrate
the properties of the proposed scheme. Section VI considers
a more realistic problem: processing satellite radar altimetry
measurements. The obtained results for this problem show an
improvement in estimate accuracy. Section VII describes an
alternate approach for parameter adaptation using a GA. This
particular approach is suited for a nonreal time setting. In
Section VIII, we re-examine the simple example of Section
V. A GA is used to perform the parameter adaptation task by
post-processing a collected set of measurements. Concluding
remarks are made in Section IX.

II. THE MAGILL FILTER BANK

The performance of the suggested adaptive filter structure
is investigated by considering the modeling problem in the
Kalman filter. In particular, we examine the well-known
problem of determining the unknown system noise covariance
matrix and the measurement noise covariance matrix.

Consider a physical system represented by

Xit1 = Pr1, k Xk + Wy,

zr = Hixp + v, M
where x;, is the n-dimensional state vector, ®j41 is the
state transition matrix, zj is the m-dimensional measurement
vector, and Hy, is the observation mapping matrix. The wy
and v noise vectors are assumed to be zero-mean, white
sequences with

E[WkWZT] = Qkém and E[Vkv,?] = Rkéki.

We also assume that process and measurement noise are
uncorrelated.

In many cases, Qy. and Ry, are unknown or known approx-
imately. Usually, Q. and R;, are modeled to be constant over
a sequence of measurements representing a local operating
regime. The elements of Q; and Rj however can vary with
time across operating regimes.

The estimate of the state can be obtained sequentially with
the Kalman filter [35], [36]. The state estimate and error
covariance matrix are propagated between measurements

Kip1 = Prr1, 1 X5 (2)
- T
Pk+1 = q)k-l—l, kPZ‘—‘I)k-l-l,k + Qk 3)
where “*” denotes estimated state, “+” denotes after measure-
ment incorporation, and “—” prior to measurement incorpo-
ration. The updated state estimate and error covariance are
given by
P;&,F = (I-KiH,)P;, (5)

where the Kalman gain K, is

K, =P HfW;! (6)
and
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Fig. 2. The Magill filter bank and weight function.

W, = H,P; H{ +R;.

Equations (2)—(6) represent the standard recursive Kalman
filter. The optimal Kalman filter requires an accurate knowl-
edge of the process noise covariance matrix Qp, the mea-
surement noise covariance matrix Ry, and the parameters of
H; and ®4; 1. In real applications, Qj and Ry are often
unknown or known approximately. This has prompted the use
of a filter bank, shown in Fig. 2, which consists of L Kalman
filters running in parallel, each operating with different values
of the unknown parameters. The parameter vector is denoted
by «; for the ith filter in the bank, X;(;) represents the
output of the 4th filter, and z} represents a sequence of k
inputs zi,zo,...,2Z,. In our case, the parameter vector «;
consists of the unknown system parameters, which in this case
is composed of the elements of Qj and Ry.

In general, if « is the unknown parameter vector, then the
optimal estimate, Xqp¢, can be shown to be a weighted sum
of Kalman filter estimates [9], [37]

L
)A(opt = Z &:(al)p (Oli | ZZ)
=1

where L is the size of the Kalman filter bank. The weight
factors w; = p(ay | z}) are computed as the measurements
are processed.

In the classical approach of Magill [9], the unknown pa-
rameter vector is assumed to have a finite number of possible
realizations. Hence, the conditional densities for each filter can
be shown to be computed recursively via

p(zi | i) = N 1|W |c_%rkT'W;1”'
V21| Wi

where

p(zi_y [ ei) (D)

Ty =2 — Hk)A(;

is the measurement residual. Using Baye’s rule, the weight
factors p(wy; | z}) are computed as

P(ZZ | ai)p(ai)
Yicip(zg | aj)p(a;y)

where the distribution p(c;) is assumed known. In general,
p(c;) is unknown, hence a uniform distribution is assumed.

plai | z;,) = (8)
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Fig. 3. A modular “mixture-of-experts” network.

When using the filter bank and learning network as a hypoth-
esis tester, we are not interested in the optimal estimate Xqp¢,
but rather in the a posteriori probabilities p(c; | z}) of each
filter.

The weight factors wi,ws,...,wr are scalar quantities.
They are computed recursively whenever an input is processed
by the filter bank. A weight is maximized/minimized according
to performance over the entire sequence of inputs. That is,
the filter with the highest weight represents the filter with the
“best” parameter vector, while the smallest weight corresponds
to the filter with the “worst” parameter vector. Of course,
unless the bank contains all the possible realizations of the
parameter vector, the best performing filter will not necessarily
be the optimal filter.

III. REGULATING MIXTURES-OF-EXPERTS

The Magill filter bank can be viewed as a modular network
[24]-[26] with a generic structure as shown in Fig. 3. Such
a single-level network consists of L modules called expert
networks, and an integrating unit called a gating network.
The input is the m-dimensional vector z. The output of the
1th expert is an n-dimensional vector y;. The output of the
complete modular network, y, is obtained as a weighted sum
of the individual expert outputs, with the weight functions
g1,92,- -, gL supplied by the gating network.

The use of modular networks has been particularly pop-
ularized in recent neural literature, where their advantages in
speed, accuracy or robustness is well documented for problems
involving nonlinear regression [38], [39] and classification
[40]. A modular network typically combines supervised and
unsupervised learning. Supervised learning is involved during
training where the desired responses, d(z(t)) are specified
with the input vector z(¢). The expert networks compete to ob-
tain the desired response. The gating network arbitrates among
the different expert networks in an unsupervised fashion, by
assigning higher values of the weight g; to networks that are
expected to be closer to the desired response for a given input.
In particular, if the weights g1, go, ..., gL satisfy

0<g <1, Vi=12...,L )

and

(10)

L
Zgi =1
i=1
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the weights can be interpreted as a priori probabilities for the
corresponding experts for the given input. A sound way of
achieving (9) and (10) is by defining g; using [41]

Ui

e
9= (11
Ej:l et
where
U; = zTai (12)

and a; is the weight vector of cell ¢, representing the ¢th
expert in the modular network. The transformation in (11) is
called softmax [42]. Fig. 4 illustrates the gating network used
in this paper. While more powerful nonlinear maps such as a
multilayered perceptron could have been used for this network,
the simple structure of (11) simplifies the update equations of
the synaptic weights, while still yielding an overall modular
structure of sufficient power.

In this paper, ecach module or expert is a particular Kalman
filter realization, and different modules are in competition for
being selected as the most likely model. With this key insight,
several results available in the theory of “mixtures of experts”
networks can be gainfully applied. As shown in Fig. 5, in
this paper the gating network is used as a mediator among
the different Kalman filters rather than its original function of
being a mediator among the different expert (neural) networks.

The Gaussian distribution of the measurement vector z; of
the 4th filter is given by

f(zx | i) = L Wit

13
\/27T|Wk| ( )
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The probability distribution of the bank can be treated as a
linear combination of the L different distributions. Then, we
can write

(14)

L
z) = Y f(zr | )gi
i=1

Equation (14) can be viewed as a likelihood function. It is
better to work with the natural logarithm of f(z;) rather than
f(zy) itself. We will define the log-likelihood function as

anf zr | )y,

and h;, the a posteriori probability associated with the ith
Kalman filter, as

l=1nf(z) (15)

;= Lf(Zk|Oéi)gi ‘ (16)
> =1 f(zilay)g;
Substituting (11) in (15), we obtain
l=1In eTEE Wk gu _ 1N (17
Z Tl Z a7

To derive the update equations for the synaptic weights of the
gating network, we start by computing the partial derivative
of [ with respect to u;. This yields

al
8u,;
The sensitivity vector of the log-likelihood function with

respect to the synaptic weight vector is found by applying
the chain rule

= hi — gi. (18)

ol al Ou;
8ai o 8uz 8al- o (hz - gZ)Zk (19)

Using an instantaneous gradient ascent procedure which seeks
to maximize (15), the synaptic weight vector a; is updated as

851 = a; +n(h: — g:)zx
where 7 is a learning-rate parameter. The update at every time
step attempts to align the ith weight vector a; with the input
vector zj. This justifies the earlier inner product definition
of u; in (12). Essentially, a; indicates the part of the input
space where the ¢th filter assumes importance, since the inner
product operation results in higher values of g; for inputs z
that are more aligned with a;.

Note that the gating network does not learn in a recursive
multiplicative manner like the Magill filter bank weighting
function. In the Magill scheme, this is reflected in the compu-
tation of the conditional densities for each filter as shown in
(7). This is due to the assumption that all possible realizations
of the unknown parameter vector (including the optimal)
are in the bank. Such an assumption is not made when
using the gating network. Rather, the included realizations
are looked upon as candidates (not necessarily optimal). The
learning done by the gating network is achieved recursively
in an additive manner and at a learning-rate 7. Typically, the
gating network output for the best performing filter quickly

a; —a;+n (20)

reaches a value close to unity. More remarkably, the gating
network readily switches to another filter in the bank when
performance of the current “best” filter degrades due to a
change in the operational regime. The switch occurs rather
fast due to the gating network property of geometrically
decreasing the impact of past measurements. In other words,
the gating network has a fading memory. In contrast, the
Magill filter bank never forgets. It gives as much weight for
early measurements as later ones. This is a direct result of
the way the conditional densities are computed. This will
lead to a longer time for the switching process to begin.
Another advantage when using the gating network is numerical
stability. In Magill’s approach, a numerical underflow problem
is often encountered with the computation of the conditional
densities [37]. This results from multiplying exponential terms
repeatedly [see (7)]. This problem does not exist when using
a gating network. This is due to the different approach to
learning by the gating network.

IV. PARAMETER ADAPTATION USING RQP

Besides changing the weighting of different filters, it is also
desirable to adapt the parameters of at least one filter. In
our current implementation, an adaptation algorithm is applied
periodically or whenever a certain threshold value is reached
by one of the gating weights g1, gs,...,gr. The adaptation
scheme is applied only to the best performing filter in the
bank. It changes the parameter vector « of that filter so as
to maximize (13) for the processed measurement set observed
since the previous adaptation. Assuming the measurement set

is composed of p measurements, denoted by z1,22,...,2),
we have
mémxf(zp,zp_l,..,,zl | o)
= f(zp:Zp-1,-..,22 | 21, ) f(Z1 | @)
= f(2zp,Zp—1,-..,23 | 22,21, @) f (22|21, @) f(Z1]|0)
= f(zp | Zp—1,-.,21,0) f(Zp_1 | Zp—2,...,21,0X),...,
f(2z2 [ 21,0) f(z1 | ). (21)

Recognizing that we can maximize the natural logarithm of
(21) and writing our optimization problem as a minimization,
we obtain

Ian = Zlnf z; | ) Z {rf W r;+In 27| W[}

=1 z—l
(22)
subject to
0 S qu S Qk S Cquv
0< Cy <Ry < Chu,
rl > IV > Yry (23)

Cpl S Qk—kl,k S Cpua
Cni < Hy < Cpae
The constraints given in (23) involve a parameter vector «

consisting of various filter parameters. The constant matri-
ces Cy1, Cyu, Crt, Cr, Cpr, Cpuy Chy, and Gy, are possible
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lower and upper bounds on the matrices Qu, Ry, ®r41.%, and
H;.

To solve the constrained nonlinear program, a number of
numerical methods can be used. The adaptation algorithm
investigated here uses a RQP [31] approach to find the so-
lution. Also, numerical derivatives are used because analytical
expressions of the partial derivatives are quite complicated
and hard to obtain.

A similar optimization set-up was suggested by Mehra [3].
Recognizing the difficulties that arise with the computation of
the partial derivatives, Mehra makes a number of simplifying
assumptions. In particular, he assumes that the system is
time-invariant, and that the Kalman filter is in steady state.
Then, he solves only for the steady state Kalman gain by
using a suboptimal maximum likelihood adaptive filter (whose
convergence is not guaranteed). Obviously, many systems of
interest are time-varying, and require the entire history of the
Kalman gain. Hence, there is a need to avoid such simplifying
assumptions. This is accomplished by the proposed adaptation
algorithm which solves directly for the unknown parameters
by using the RQP method.

V. EXAMPLE 1

In this section, we consider a simple tracking example to
illustrate the performance of the adaptive Kalman filter bank.
The target is traveling in a straight line at a constant velocity of
100 m/s. Thus the linearized equations of motion are given by

1 At
L= 1o 1

<. — |%1k| _ | range
o | T velocity
is the state vector of the target. It is assumed that range and

velocity measurements are collected every At = 1 s. The
measurement equation is then given by

:| Xi + Wi (24)

where

1 0
Zk:|:0 1:|Xk+Vk (25)

where
range measurement }

21k
4 — = A
k [zzk ] {Velocny measurement

is the measurement vector. The wy, and v vectors are zero-
mean, white sequences. The covariance matrices for the wy,
and vy vectors are given by

0
E[wiwl] = Quéors = [qol ]%
and

E[VkviT] = Rkéki =

We also assume that process and measurement noise are
uncorrelated.

The following experiments illustrate the capabilities of the
proposed adaptive Kalman filter bank. In these simulations, a
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Kalman filter bank of size 5 is used. The unknown parameter
vector consists of the system noise covariance matrix and the
measurement noise covariance matrix. Hence, the parameter
vector « is defined as

a=[p @ n . (26)

The initial conditions for the individual standard recursive
Kalman filters in the bank are

[0 p-_[ro00 o
o~ lo|” *°~ | 0o 1000]

A. Experiment 1

We will first start by examining the ability of the gating
network to partition the input space. This is done by modeling
the third Kalman filter in the bank with the optimal parameter
vector. Hence, the gating network should assign the optimal
filter (i.e., KF 3) a weight close to unity as described earlier.
The various values of the parameter vector for the individual
filters are shown in Table 1. Simulations were run for different
values of the learning parameter 7. The results for n = 0.1 and
1.0, shown in Fig. 6, illustrate the effect of the learning-rate
parameter on the gating weight history. As expected, we find
that increasing the value of the learning-rate parameter will
result in a faster convergence to the optimal filter. However,
we should note that the possibility of initially favoring a
non-optimal filter increases if 7 is made too large.

B. Experiment 2

Next, we are interested in illustrating the ability of the gating
network to select the best performing filter when the optimal
filter is not in the filter bank. That is, the gating network should
learn which filter is showing better performance. The optimal
values of the parameter vector and the actual implemented
parameters of the filter bank are shown in Table II. Again,
simulations were run for different values of the learning
parameter 77. The results for = 0.1 and 1.0, shown in Fig. 7,
illustrate the effect of the learning-rate parameter on the gating
weight history. We find that selection of the best performing
filter is quite rapid. In all cases, the gating network selected
the third Kalman filter in the bank since its parameter vector
is “closest” to the optimal.

C. Experiment 3

We recall that the adaptive filter bank should have the
ability to switch among Kalman filters when the need arises. To
illustrate this capability of the filter bank, we ran a compound
measurement sequence created by concatenating five sub-
sequences of equal length, with the process and measurement
noise statistics of the first sub-sequence best matching KF
1, that of the second sub-sequence best matching KF 2,
and so on. That is, in each sub-sequence, the process and
measurement noise statistics were changed. The values of the
parameter vector used for these simulation are given in Table
III. In these simulations, the learning-rate is 7 = 1.0. The
results, shown in Fig. 8, illustrate the ability of the gating
network to perform this task efficiently. The ability to process
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Fig. 6. Gating weight history for two values of i with optimal Kalman filter
(KF 3) included in the bank (Experiment 1). (a) Learning rate parameter
7 = 0.1 and (b) learning rate parameter n = 1.0.
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TABLE 1
PARAMETER VECTORS IN A FILTER BANK CONTAINING THE OpTIMAL (KF 3)
a|KF1|KF2|KF3[KF4]|KEFS5
@ 1.0 9.0 16.0 | 25.0 5.0
g | 1.0 9.0 16.0 | 25.0 | 20.0
re | 1.0 | 25.0 | 16.0 9.0 25.0
ro | 1.0 | 25.0 | 16.0 9.0 10.0

a larger number of measurements is shown in Fig. 8(b).
This demonstrates that the proposed approach is free from
numerical underflow problems when processing large amounts
of data.

For comparison purposes, the gating network is replaced
with the Magill weighting scheme. We ran the 5 measurement
sub-sequences of length 100 each, using the original weighting
scheme. The obtained weight history is shown in Fig. 9(a). The
scheme experiences a numerical underflow after processing
168 measurements. Fig. 9(b) is a plot of the weight history
obtained using the gating network. To compare with the Magill
scheme, the plot is shown only for the first 168 measurements.
We observe that the need to switch to the second Kalman
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Fig. 7. Gating weight history for two values of i with optimal Kalman filter
not included in the bank (Experiment 2). (a) Learning rate parameter n = 0.1
and (b) learning rate parameter n = 1.0.

450

050 100 150 500

TABLE 1I
PARAMETER VECTORS IN A FILTER BANK NOT CONTAINING THE OpTIMAL (KF*)
a [KI*[KF1 [KF2[RF3[KF4[KI'5
@ | 160] 1.0 | 90 {120 ] 250 | 5.0
@] 160] 1.0 | 90 | 120 | 25.0 | 200
rp | 16.0| 1.0 | 25.0 | 20.0 | 9.0 | 25.0
rp | 160 ] 1.0 | 25.0 | 20.0 | 9.0 10.0

filter is detected with the gating network which switches after
measurement 103, as compared to the Magill scheme that
does so only after measurement 110. Also, Fig. 9(a) and (b)
reveals that the Magill algorithm was able to assign a unity
weight to the appropriate filter before and after the switch
in a relatively shorter time when compared to the gating
network. To obtain a faster convergence of the weight with
the gating network, the learning-rate parameter which controls
the speed of convergence can be increased (as shown earlier in
Experiments 1 and 2). For example, when n = 7.0, the gating
network converges as fast as the Magill algorithm. Because
of the underflow problem, comparison could not be made for
sub-sequence of length 1000.
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TABLE III
PARAMETER VECTORS FOR THE SWITCH EXPERIMENT
o | KF1[KF2|KF3|KIF4|KEFS5
O 1.0 10.0 | 10.0 5.0 1.0
¢ | 1.0 25.0 | 10.0 | 25.0 1.0
ry 1.0 1.0 16.0 2.0 2.0
ro| L0 | 1.0 [ 16.0 | 25.0 | 50.0

D. Experiment 4

Finally, we will illustrate the adaptation of a particular
parameter vector of a filter in the bank by using a ROP search
approach. We start by initializing every Kalman filter in the
bank with a different realization of the unknown parameter
vector «. The learning-rate parameter used is 7 = 1.0. The
initial bank parameters values are shown in Table IV. We will
apply the adaptation algorithm periodically every 200 s. As
indicated in Fig. 10, the gating network clearly prefers the first
Kalman filter. This is an indication that the parameters of this
filter are the best candidate. At ¢ = 200 s, using the parameter
vector of the best filter as an initial search point, the RQP
search is initiated to look for the optimal parameter vector for
the measurements processed in the last 200 s. For this first set
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Fig. 9. Comparison of approaches: (a) Magill’s weighting scheme and (b)
gating network with » = 1.0.

of measurements, the parameter vector obtained by solving the
optimization problem (described earlier in Section IV) is

a=[470 20.69 22.83 14.54]"
which is close to the actual solution
o =[4.31 2245 24.01 11.42]T.

Since the obtained solution is quite different than the current
parameter vector of the best filter (i.e., KF 1), filter adaptation
is performed. In other words, the update would not be neces-
sary if the obtained vector is close to the one currently used.
Adaptation proceeds as follows:

1) Solution is provided to the Kalman filter which has the
best performance;
2) Covariance matrices of all filters in the bank are re-
initialized; and
3) Estimates of all filters are re-initialized with the estimate
of the best Kalman filter prior to the update procedure.
Fig. 10 shows the gating weight history of the filter bank
before and after the filter update procedure is performed. As
expected, the first filter rapidly attains a high weight. As
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Fig. 10. Summary of gating weight history before and after adaptation
(Experiment 4).

indicated earlier, only the parameters of the best filter are
updated. The other filters are not changed to keep a diversity
of models covering the unknown parameter search space. If a
drastic change in parameters occurs then a switch to another
filter will happen as shown in the previous experiment. Hence,
it is desirable to keep the filter parameters models apart to
rapidly respond to such changes. These models serve as initial
search points in the parameter search space. In essence, the
adaptation procedure is a periodic filter tuning procedure,
wherein the parameter vector of the best filter is moved closer
to the optimal one.

VI. EXAMPLE II

This section examines the problem of processing satellite
radar altimetry measurements. One important use of space
borne radar altimetry data is in the determination of short-
wavelength features of the ocean and ice surface topography.
Earth-orbiting satellites (carrying altimeters) have evolved into
an important source of data for monitoring global oceans
and ice glaciers. The data collected has allowed the study
of the physical characteristics of the oceans [43]-[45]. This
real world problem is an application where measurements are
post-processed. It allows a realistic testing of the suggested
mixture-of-experts approach.

The return signal strength of the radar altimeter, s(t), can
be modeled as

() = B()s(t) +wy @7)

/j(t) = w2
where w; and wy are zero-mean Gaussian processes satisfying
Elw (H)wi(7)] = qu(H)é(t — 7),

Elw, (t)wa(7)] = q2(£)é(t — 7),
Elwy(t)wa(1)] = 0.

(28)

The measurement equation is given by

2 = S + Uk (29)

TABLE 1V
PARAMETER VECTORS FOR INDIVIDUAL FILTERS BEFORE THE FIRST ADAPTATION
a | KF1|{KF2|KF3|KF4|KF5
g1 | 20.0 0.0 10.0 5.0 50.0
g2 ] 20.0 | 0.0 | 100 | 5.0 | 50.0
ry | 20.0 5.0 1.0 5.0 50.0
T2 | 200 50 | 1.0 | 50 | 50.0

where 7, is the observed value of s at time ¢;. The mea-
surement noise, vy, is a zero-mean white sequence of known
variance satisfying

E[’U;ﬂ}i] . 0'2(5;”‘. (30)

The filtering approach to this nonlinear system is to use the
continuous-discrete extended Kalman filter (EKF) [46]. The
derivation of the filter algorithm for this particular system
model is detailed in [47]. For the satellite altimeter problem,
filter performance is improved if the system noise parameters
are adjusted to fit the data sample [48]. This is justified by
the fact that s(t) varies at a fixed location with time and
geographically with latitude and longitude. Filter performance
is verified by computing the root mean square (RMS) defined
as

P
RMS = =3 (2 - 57)° (31)

P

where p is the size of the measurement set and §j’ is the state
estimate of the power of reflected signal after incorporating
measurement z; (i.e., the updated state estimate). The unknown

parameter vector « for this problem is defined as

a=[n ¢l (32)

Currently, the system noise parameters for a particular data
set are selected by a (generally) ad hoc procedure of making
many computer simulations with various realizations of the
unknown parameters until an acceptable RMS threshold is
reached. The use of the mixture-of-experts approach to process
satellite radar altimetry data sets represent a methodical way
for adjusting the system noise parameters. In fact, a small
number of EKF’s each operating with a different set of the
unknown parameter vector are considered. The learning gating
network is used to identify the filter with the “best” parameter
vector for a particular measurement set. Using the selection
made by the gating network as a starting point, a RQP search
is initiated to find a more suitable parameter vector for the
processed measurement set. This recursive procedure can be
repeated for every processed data set.

An EKF bank of size 5 was used to process real altimeter
waveform data', shown in Fig. 11, the noise variance of which
is 02 = 0.25. The 64 data points (known as gates) are collected
at equal time intervals. They form a typical profile obtained
over open ocean or large body of water. The initial conditions
for the individual EKF’s in the bank are

8 5 10
[Bﬂ - [—0.05}’ Po= [0 1}'

I'TOPEX data and initial filter conditions were provided by Dr. P. A. M.
Abusali, Center for Space Research, University of Texas, Austin, TX 78712
USA.
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Fig. 11. Profile of real altimeter data over open ocean.
TABLE V
PARAMETER VECTORS FOR INDIVIDUAL FILTERS
‘o [ BKF 1 [ EKF 2 [ EKT 3 [ EKF 4 [ EKF 5
G 1072 1073 10~! 1072 10-2
g2 | 107° 10-° 107? 7179:3 1073
A. Step 1

The initial filter parameters of the various EKF’s are shown
in Table V. The values of ¢; and ¢» are chosen to be less
than unity to ensure that the uncertainty in our estimates
(reflected by the covariance) will decrease as we process the
measurement set. Simulations were run for different values of
the learning-rate parameter 7. The results for = 0.1 and
1.0, shown in Fig. 12, suggest that the third EKF has the best
parameter vector for the processed data set.

B. Step 2

Now that the mixture of EKF’s regulated by the gating
network has been used to identify the “best” parameter vector,
the RQP search approach is used to obtain a more suitable
solution. This is done by solving the optimization problem of
Section IV for the processed measurement set. The obtained
solution for the constrained nonlinear program using RQP is

o =[0.1985 0.0548]"

which suggests a ¢; ~ 107! and ¢, ~ 1072 for this particular
altimeter waveform data.

C. Step 3

We examine the filter performance of the various models
by computing the RMS defined earlier in (31). The results are
shown in Table VI for the EKF’s using the initial parameter
sets and for an EKF using the parameter set found in step 2
(denoted EKF*). The obtained system noise parameters yield
an RMS which is smaller by an order of magnitude when
compared with the resulting RMS of the best model before
initiating the search (i.e., EKF 3). This improvement in filter
performance is significant. Also, a plot of ¢; = zi—§;" for these
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Fig. 12. History of gating weights for two values of 7. (a) Learning rate
parameter = 0.1 and (b) learning rate parameter n = 1.0.

TABLE VI
PERFORMANCE OF VARIOUS FILTERS
EKF 1| EKF 2 [ EKF 3 [ EKF 4 | EKF 5 | KT~
RMS | 42379 | 25.6593 | 0.2937 | 0.3923 | 0.3908 0.0101

two models is shown in Fig. 13 to illustrate the improvement
in the estimation error.

VII. PARAMETER ADAPTATION WITH GENETIC ALGORITHMS

GA’s are search algorithms based on the ideas and principles
of biological evolution [32], [33]. These algorithms differ from
the usual search algorithms in many ways. GA’s consider
many points in the search rather than a single point. This
reduces the possibility of converging to a local extrema.
Also, GA’s do not work with the parameters themselves but
rather with their coding (binary string), and use probabilistic
transition rules in their search.

The properties of GA’s lend themselves naturally to the
modular structure of the filter bank. Generally, a larger number
of filters are needed in the bank. This is due to the necessity
of having a population of parameter vectors so that a GA
use becomes possible. This approach to adaptation is not
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Fig. 13. Comparison of estimation errors: (a) EKF 3 (best among current)
and (b) EKF* (revised from RQP).

naturally implementable in real-time applications. Rather, it
is a scenario which can be used for applications where the
filter bank parameters need to be found after collection of
the measurement set. The advantages of using a GA is the
simplification of the adaptation procedure. In essence, a GA
will only need the fitness of the current filter parameter models
to start a search. This is readily available since it is just the
gating weight provided by the network. Fig. 14 illustrates the
operation of the adaptive filter bank with a GA in the feedback
loop.

VIII. EXAMPLE III

We will consider the same illustrative example of Section V.
We will also assume that the interest is to determine both the
process noise covariance and measurement noise covariance
matrices for the same set of 200 measurements of Experiment
4 in Section V. A Kalman filter bank of size 20 is used.
We start by initializing every filter of the bank by randomly
generating a binary string of length [ = 10 for each component
of the unknown parameter vector. The integer I represented by
that string is then mapped to a real number M in the parameter
search space which was assumed to be [a,b] = [1,50] for all

/
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Fig. 14. Adapting the Kalman filter bank with a genetic algorithm.

the components of «. The mapping function is given by

b—a

20 -1
The binary string representing a filter is a concatenation
of the individual strings representing each of the unknown
components of that filter. Since the parameter vector of this
example contains four components, as shown in (26), the
length of the string representing a particular filter parameters
model has a length of 4] = 40. The measurement set is
processed by the filter bank. A gating network which has a
unity learning-rate parameter is used to assess the performance
of the various filter models. The bank adaptation procedure
consists of supplying the weight values after processing the
last measurement to the GA which has the binary coding of the
current bank parameters. At this point, the GA will generate
a new set of binary strings by 1) selecting two strings based
on fitness, 2) choosing crossover positions (at the boundaries
between the binary representations of each parameter value),
and 3) using mutation after crossover. A common practice in
GA’s is to include the best performing string of the current
generation in the new generation. This will serve two purposes.
A good string would not be lost due to the probabilistic nature
of GA’s and convergence to the optimal solution is faster. The
integer values represented by these strings are decoded and
mapped to real numbers by using (33). This results in a new
set of vectors «vy, cva, . . ., crag. These are passed to the Kalman
filter bank and the measurement set is processed again. This is
repeated until the scheme converges or the maximum allowed
number of iterations, 30, is reached. Convergence is checked
by comparing the unknown parameter vector for all filters with
a non-negligible weight. This is accomplished by checking
the difference among the corresponding components for these
filters. If the difference is within our specified tolerance, € = 2,
then the iterations cease.

As seen in Fig. 15 (top left and top right), initially each filter
is modeled around different value of the unknown parameter
vector. These are generated randomly in the interval [1,50].
The optimal components of «* are both indicated by “*” for
(q1,92) and (71, r2) which represent the diagonal components

M =

I+a. (33)
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TABLE VII
OPTIMAL AND BEST (1st AND 18th ITERATION) PARAMETER VECTOR

o | Optimal | Best Ist iter. | Best 18th iter.
@ | 431 2.31 6.22
@ | 2245 18.58 20.45
| 24.01 8.66 2418
ry | 11.42 11.71 11.66
of @ and R, respectively. Fig. 15 (by) and (bz) shows the

18th iteration parameter values. The scheme has essentially
converged. This is demonstrated by the clustering effect shown
in Fig. 15 (by) and (by) where the plotted circles are centered
around the optimal parameters. We note that some of the filters
have a significantly different value for c«. However, these filters
are assigned a zero or negligible weight by the gating network.
The best performing parameters in the 1st and 18th iteration
are shown in Table VII with the optimal parameter values. The
returned solution is consistent with the optimal.

IX. CONCLUSION

The modular adaptive Kalman filtering approach introduced
in this paper has certain key advantages over conventional
filter banks. The gating network adapts the weights given to
individual filter outputs based on the observed sequence of
measurements. This learning is unsupervised and the desired
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parameters need not be specified. The learning mechanism
also does not assume that the optimal filter is in the bank.
This feature, together with the periodic application of a search
algorithm in the feedback loop, enables the system to provide
good estimation accuracy even with small filter banks. The
additive nature of the weight update procedure enables quicker
response to changing environments and better numerical sta-
bility.

The thrust of the paper is on real-time applications. The RQP
search algorithm can be applied concurrently while the filter
bank and gating network are in operation. The GA alternative
however is realistic only for non real-time applications where
one may be willing to use much more compute power to obtain
more accurate solutions.

The overall scheme is quite general and not restricted to
using linear or extended Kalman filters as the individual ex-
perts. It can also be readily extended to hierarchical filter banks
which involve multiple levels of gating [25]. The fundamental
tradeoff between estimation accuracy and computational time
involved in choosing i) the size of the filter bank and ii)
when and how often to use the search algorithm, is problem
dependent. Further experimentation on diverse data sets will
help in better understanding such practical issues.
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